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Abstract

Coupled 6-DOF/CFD trajectory predictions using an automated Carte-

sian method are demonstrated by simulating a CBU-a2/JDAM store sepa-

rating from an F-18C aircraft. Numerical simulations are performed at two

Mach numbers near the sonic speed, and compared with flight-test telemetry

and photographic-derived data. Simulation results obtained with a sequential-

static series of flow solutions are contrasted with results using a time-dependent

flow solver. Both numerical methods show good agreement with the flight-test

data through the first half of the simulations. The sequential-static and time-

dependent methods diverge over the last half of the trajectory prediction, after

the store produces peak angular rates. A cost comparison for the Cartesian

method is included, in terms of absolute cost and relative to computing uncou-

pled 6-DOF trajectories. A detailed description of the 6-DOF method, as well

as a verification of its accuracy, is provided in an appendix.
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1 Introduction

Trajectory prediction is an important element in Computational Fluid Dynam-

ics (CFD) simulations of bodies undergoing unconstrained, or partially constrained

motion. Modeling this behavior involves integrating the Newton-Euler equations for

six-degree-of-freedom (6-DOF) rigid-body motion, in response to aerodynamic and

other externally applied loads. Numerous important applications for such models ex-

ist, including store separation from an aircraft, booster separation from a space launch

vehicle, canopy or shroud separation, and simulation of flight control systems. Many

CFD technologies have been demonstrated for 6-DOF sinmlations, including struc-

tured overset[l, 2], unstructured tetrahedral[3, 4], and hybrid prismatic/Cartesian[5].

The current work demonstrates an integrated package for performing 6-DOF sinmla-

tions couple with an inviscid, Cartesian embedded-boundary method.

Such non-body-fitted, Cartesian methods are particularly interesting for 6-DOF

applications since they can be made both extremely fast and robust, and the volume

meshing can proceed automatically. Moreover, they are comparatively insensitive to

the complexity of the input geometry since the surface description is decoupled from

the vohune mesh. In the current work, the "cut-cell" Cartesian meshing scheme of

Aftosmis et al.[6] is utilized. The intersection of the solid geometry with the regular

Cartesian hexahedra is computed, and polyhedral cells are formed which contain

tile embedded boundary. This volume meshing procedure is robust, computationally
efficient, and does not require user intervention.

In order to demonstrate the utility of the Cartesian 6-DOF package, a U.S. Navy

GBU-32 Joint Direct. Attack Munition (JDAM) store (cf. Fig. 1) separating from

an F/A-18C is simulated using both sequential-static and time-dependent methods.

This transonic JDAM separation was put forward by the Navy as a "challenge" to the

CFD comnmnity because it exhibited behavior that could not reliably be predicted

with conventional store separation analysis tools (cf. Cenko [7, 8]) . The JDAM

separation provides an attractive demonstration case because it contains a complex

aircraft geometry, flight telemetry and photographic-derived quantitative data, and

also because it has been simulated by numerous other CFD methods[9 15]. These

previous CFD simulations can be broken into two broad classes; those which computed

a set of static solutions which were used with a store trajectory simulation package,
and those which computed the trajectory of the store within the CFD simulation

process. Both of these approaches are supported with the current methods and a cost

comparison will be presented.

The discussion begins by reviewing tile geometry used in the simulations, and

briefly outlines the numerical scheme. Next it presents computed results for the

JDAM separation flight conditions just below and just above sonic speed (Mo_ =

0.962 and 1.055). These results are directly compared to both flight telemetry and

photographic-derived data. The computational cost for the current method is pro-

vided, along with a summary of the current results and topics for future work. A

detailed description and verification of the stand-alone 6-DOF package used with the



Figure 1: U.S. Navy GBU-32 Joint Direct Attack Munition (JDAM) on the F/A-18C wing pylon.

The dark green fins and center carriage provide the JDAM GPS guidance augmentation system

which can be retrofit on a general purpose unit such as (in this case) an Mk-84.

current scheme is included in an appendix.

2 Numerical Scheme

2.1 Geometry and Computational Mesh

The surface geometry was provided as a set of structured surface patches. These

were converted to water-tight surface triangulations of the various components. The

addition of an internal duct connecting the engine diffuser face to the exit nozzle

was required in order to form a water-tight fuselage. The component geometry for

the complete F/A-18C is shown in Fig. 2, with water-tight components shown with

different colors. All of the major components of the geometry are modeled, including

the empennage, AIM-/" wingtip missile and rail, wing with leading-edge extensions

(LEX), the LEX fence, the engine inlet including boundary layer vents, and the wing

pylons holding a 330 gal. external fuel tank (EFT) inboard, and the GBU-32 JDAM

outboard. Note that the flight configuration did not contain the AIM-7 wingtip

missiles. Fig. 3 shows a closeup view of the JDAM in its initial position beneath the

port, outboard wing pylon. The attachment hardware and ejector mechanism is not
modeled.

Using the automated Cartesian meshing scheme of Aftosmis et al.[6], the trian-

gulated surface was used to generate an unstructured Cartesian volume mesh by

subdividing the computational domain based upon the geometry. The sharp geo-

metric features contain refined cells, while areas away from the geometry maintain a

relatively coarse spacing. The intersection of the solid geometry with the the regular

Cartesian hexahedra is computed, and polyhedral cells are formed which contain the

embedded boundary. Regions interior to the solid geometry are removed. The solid-

wall boundary conditions for the flow solver are then specified within these cut-cell
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Figure 2: F/A-18C surface geometry. Water-tight components are shown with different colors.

Figure 3: Closeup view of triangulated GBU-32/JDAM m its initial position beneath the wing

pylon.
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Figure 2: F/A-18C surface geometry. Water-tight components are shown with different colors.

Figure 3: Closeup view of triangulated GBU-32/JDAM in its initial position beneath the wing
pylon.
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Figure 4: Cutting plane through the Cartesian volume mesh.

polyhedra.

In addition to mesh refinement near geometric features, pre-specified adaption

regions are arranged around the major components of the F-18 aircraft to resolve the

shock structures that occur at the current flow conditions. The adaption region which

surrounds the JDAM translates with the center of mass (c.m.) location as tile store

drops. In the future, these pre-specified regions will be replaced with automated

solution and geometry adaptation similar to the steady-state scheme outlined by

Aftosmis and Berger[16]. A mesh refinement comparison was performed for the static,

steady-state simulation with the JDAM in its initial position at the Mach 0.962 flight

conditions (cf. Table 2). The resulting volume mesh is isotropic and contains 3.8M

cells with a surface resolution of 1.0 in. A volume mesh cutting plane through the

wing is shown in Fig. 4. Details of the mesh adaptation to the moving geometry will

be presented in Sec. 3.

2.2 Flow Solver

Tile inviscid, parallel multigrid flow solver of Aftosmis et a1.[17] provides static,

steady-state flow simulations for Cartesian meshes. Recently, this flow solver has been

extended to provide capability for time-dependent flows, including dynamic simula-

tions with rigid bodies in relative motion[18, 19]. The current work implements an

independent 6-DOF module which can be utilized as a stand-alone external applica-

tion, or tightly coupled within the time-dependent flow solver. A flow diagram for

the 6-DOF/CFD simulation process is shown in Fig. 5. The XML4CFD interface[20 l

is utilized to integrate the independent mesh generation, flow solver, post-processing,

and 6-DOF steps into a unified computational framework.

5



XML4CFD

Volume Mesh Force/Moment
Flow Solver 6-DOF

Generation Post-processing

New Geometry at n+l

Figure 5: Process diagram for 6-DOF simulations. The red-colored processes are serial and tile blue

parallel. The XML4CFD interface[20} provides a single repository and API for the moving-body

information required by the separate processes.

The 6-DOF module decomposes the rigid-body motion into a translation of the

center of mass and a rotation about an axis passing through the c.m. location. The

position of the c.m. is updated using Newton's laws of motion in the inertial frame,

while the rotation of the body is determined by numerically integrating Euler's equa-

tions of motion in a body principal-axis system. The rotational position of the body

is specified using Euler parameters, which are updated by numerical integration of

the angular velocity. General external applied forces, in either the aerodynamic or

body coordinate flames, can be specified. A detailed discussion of the 6-DOF model,

along with validation test cases is presented in App. A.

2.3 Ejector Force Model

The JDAM is forced away from its wing pylon by means of identical piston ejectors

located in the lateral plane of the store, -10.11 in. forward of the c.m., and 9.89

in. aft. The ejectors extend during operation for 6 in., and the force of each ejector

is a polynomial function of this stroke extension (cf. Cenko[7]). As the store moves

away" from the pylon it begins to pitch and yaw due to aerodynamic forces, and the

stroke length of the individual ejectors responds asymmetrically. This response of

the ejectors to the store motion is modeled, and the result is presented as a flmction

of time for each piston. This modeling process for the F-18/JDAM is described by

Fortin et a1.[14], and the results are presented in Table 1. A consistent theme with

previous sinmlations is that this ejector model is linfited (cf. [8, 9, 14, 15]). Since

even slight errors in the initial trajectory of the store can become augmented as the

separation simulation is marched forward in time, researchers have modified either the

ejector model, or the computed JDAM trajectory, in order to provide a realistic store

separation. Physically, the JDAM is constrained by the ejector mechanism, which is

not accounted for in simplistic models. For example, the JDAM cannot be allowed

to pitch nose-down without bound, as physically the aft ejector would restrict such
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polyhedra.
In addition to mesh refinement near geometric features, pre-specified adaption

regions are arranged around the major components of the F-18 aircraft to resolve the

shock structures that occur at the current flow conditions. The adaption region which

surrounds the aDAM translates with the center of mass (c.m.) location as the store

drops. In the future, these pre-specified regions will be replaced with automated

solution and geometry adaptation similar to the steady-state scheme outlined by

Aftosmis and Berger[16]. A mesh refnement comparison was performed for the static,

steady-state simulation with the aDAM in its initial position at the Mach 0.962 flight

conditions (cf. Table 2). The resulting volume mesh is isotropic and contains 3.8M

cells with a surface resolution of 1.0 in. A volume mesh cutting plane through the

wing is shown in Fig. 4. Details of the mesh adaptation to the moving geometry will

be presented in Sec. 3.

2.2 Flow Solver

The inviscid, parallel multigrid flow solver of Aftosmis et a1.[17] provides static,

steady-state flow simulations for Cartesian meshes. Recently, this flow solver has been

extended to provide capability, for time-dependent flows, including dynamic simula-

tions with rigid bodies in relative motion[18, 19]. The current work implements an

independent 6-DOF module which can be utilized as a stand-alone external applica-

tion, or tightly coupled within the time-dependent flow solver. A flow diagram for

the 6-DOF/CFD simulation process is shown in Fig. 5. Tile XML4CFD interface[20]

is utilized to integrate the independent mesh generation, flow solver, post-processing,

and 6-DOF steps into a unified computational framework.
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Figure 5: Process diagram for 6-DOF sinmlations. The red-colored processes are serial and the blue

parallel. The XML4CFD interface[20] provides a single repository and API for the moving-body

information required by the separate processes.

The 6-DOF module decomposes the rigid-body motion into a translation of the

center of mass and a rotation about an axis passing through the c.m. location. The

position of the e.m. is updated using Newton's laws of motion in the inertial frame,

while the rotation of the body is determined by numerically integrating Euler's equa-

tions of motion in a body principal-axis system. The rotational position of the body

is specified using Euler parameters, which are updated by numerical integration of

the angular velocity. General external applied forces, in either the aerodynamic or

body coordinate frames, can be specified. A detailed discussion of the 6-DOF model,

along with validation test cases is presented in App. A.

2.3 Ejector Force Model

The JDAM is forced away from its wing pylon by means of identical piston ejectors

located in the lateral plane of the store, -10.11 in. forward of the c.m., and 9.89

in. aft.. The ejectors extend during operation for 6 in., and the force of each ejector

is a polynomial function of this stroke extension (el. Cenko[7]). As the store moves

away from the pylon it begins to pitch and yaw due to aerodynamic forces, and the

stroke length of the individual ejectors responds asymmetrically. This response of

the ejectors to the store motion is modeled, and the result is presented as a function

of time for each piston. This modeling process for the F-18/JDAM is described by
Fortin et a1.[14], and the results are presented in Table 1. A consistent theme with

previous simulations is that this ejector model is limited (cf. [8, 9, 14, 15]). Since

even slight errors in the initial trajectory of the store can become augmented as the

separation simulation is marched forward in time, researchers have modified either the

ejector model, or the computed JDAM trajectory, in order to provide a realistic store

separation. Physically, the JDAM is constrained by the ejector mechanism, which is

not accounted for in simplistic models. For example, the JDAM cannot be allowed

to pitch nose-down without bound, as physically the aft ejector would restrict such



motions.

ForwardEjector A_Ejector
Time(sec) Force(lbf) Force(Ibf)

0.00 97 97
0.01 206 223

0.02 531 283

0.03 1053 549

0.04 4723 988

0.05 4641 4708

0.06 4542 4633

0.07 4414 4528

0.08 4255 4386

0.09 0 4243

0.10 0 0

Table 1: Modeled F/A-18C/GBU-32 ejector forces (el. [7, 14]).

While the focus of the current work is not to develop an ejector model for the F-

18/JDAM configuration, simulating the store separation with an ejector model which

has known inaccuracies serves little purpose. An attempt to modify the ejector model

to account for the constraint imposed by the wing pylon and ejector mechanism is

proposed. First, following the a posteriori observations of Cenko[8], the magnitude of

the ejector forces was increased by 25%. Next, it is assumed that while the ejectors

are accelerating (roughly 0.0 < t < 0.05 see), the rotation of the JDAM is restricted

by friction between the ejector pistons and the JDAM surface. From examining the

flight data it is clear that the rotation is not completely restrained, so a fliction

resistance equivalent to 50% of tile aerodynamic moments is imposed initially, which

is allowed to linearly decrease to no resistance at t = 0.05 sec. This modified ejector

model is used with all the simulation results presented here.

3 Computed Results

The numerical scheme outlined in the previous section was used to compute the

separation of a GBU-32/JDAM from an F/A-18C at the two flight conditions listed

in Table 2. The inertial properties for the JDAM were provided by the Navy, and

are summarized in Table 3. The pylon ejector modeling was discussed in Sec. 2.3.

This configuration was tested in the wind-tunnel using a Captive Trajectory System

(CTS) and in-flight by the U.S. Navy (cf. Cenko[7]). Near sonic speeds, the variation

of pitching and yawing moments experienced by the JDAM with Mach number be-

comes highly non-linear. This strong non-linearity makes trajectory prediction using

linearized methods (cf. Keen[21]) challenging. High-fidelity CFD methods can po-

tentially provide a cost-effective, accurate tool for predicting store trajectories at all
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flight conditions.

Case1 Case2
Machnumber(Moo) 0.962 1.055

Altitude (h) 6332ft. 10,832ft.
AOA (c_) 0.46° -0.65 °

Dive Angle('7) 43.0° 44.0°

Table2: Computedflightconditions.

Sref

L,.¢/

c.m.

Inass

/=
G
L:
g_.

1.767 sq. ft.

1.5 ft.

62.66 in. from nose

2059.44 ibm

20.02 slug - sq. ft.

406.56 slug - sq. ft.

406.59 slug - sq. ft.

-0.680 slug - sq. ft.

0.860 slug - sq. ft.

0.00 slug - sq. ft.

Table 3:GBU-32 JDAM inertial properties and reference quantities.

Static, steady-state simulations were computed with the JDAM in its initial po-

sition below the wing pylon for both flight conditions. Surface pressure contours on

the body surface are shown in Fig. 6 for the ._I_ = 1.055 simulation. The shock

reflections on the wing pylons due to the stores are visible, as are the shocks that

appear on the canopy, wing, and empennage. The cutting plane shows the resolution
of the shocks to the farfield.

The computed forces and moments on the JDAM from the initial static simu-

lations are compared with wind-tunnel and flight data in Table 4. No uncertainty

predictions or error estimates are available for the wind tunnel or flight data. The

computed results are in good agreement with the flight and tunnel data, with the

largest discrepancy occurring in yawing moment at M_ = 0.962, which is less than

10_ variation. In general, the computed results compare more favorably to the flight

data at ?trot = 1.055 than 0.962, as would intuitively be expected.

3.1 Sequential-static Simulations

The current work simulates the separation of the JDAM using both time-dependent

and steady-state methods. The inertia of the GBU-32 is very large, and the expecta-

tion is that unsteady effects are minimal, at least while the store is still close to the



Figure6: SurfacepressurecontoursontheF-18Csurface(M_ = 1.055,a = -0.65°).

pylon. This thesis is examinedby comparisonof time-dependentseparationresults
with "sequential-static"simulations.Thesequential-staticresultsarepresentedfirst.
In this method, the store is repositionedat the new time levelbasedupon the com-
puted loadsat the previoustime level (eft Fig. 5, Sec.2.2), howeverthe flow solver
ignoresthe motion of the body and treats it asa static, steady-stateproblemat the
newbody position. This approachcanbeattractive whenaccurate,time-dependent,



Wind Tunnel
Flight

Computed

jr I cy Ir I
0311011 - -232-2761015 - -25 -28 

0.67 0.33 0.09 0.16 -2.36 -2.49

a) M_ = 0.962, a= 0.46 ° , At = 43 °

II<_,lcy r JIc, rc l c,, l
Wind Tunnel 0.24 -0.02 - -2.07 -2.56

Flight - 0.25 ] -0.05 - -2.0 -2.2

Computed 0.65 0.28 I -0.03 0.15 -2.02 -2.11

b) M_ = 1.055, a = -0.65 °, 3' = 44 °

Table 4: Computed forces and moments on the JDAM for the initial store position. Wind tunnel

and flight data taken from Cenko[TJ.

moving-body flow solvers are not available. In the current work, the computed so-

lution at the previous time level is transfered to the new mesh, after the body has

been repositioned, to use as an initial guess. This transfer process, which is described

in [19] for the time-dependent scheme, minimizes the computational cost since the

solution at the previous time level provides a good initial guess for the solution at
the next time level.

A constant timestep of At = 0.0075 see. is used for these simulations. Due to

time constraints, it was not possible to perform a time resolution study for these

cases. Information travels roughly one JDAM body length in 12 timesteps using this

resolution, which is felt to be reasonable. All simulations were run through t = 0.45
see.

Computed results for tile relative displacement of the JDAM c.m. location are

compared to flight data for both computed cases in Fig. 7. Similar plots for the

angular position and angular velocity of the JDAM are shown in Figs. 8 and 9 re-

spectively. Below t = 0.20 sec. the predicted displacement and angular position are

in good agreement with the flight data, however the angular rate prediction has be-

gun to degrade. At later times, the cumulative errors in angular position lead to a

poorer agreement with the flight data, while the predicted displacement of the c.m.

correlates well through the simulation. The accuracy of the current predictions is

commensurate with previous computed results for this same configuration[9-15]. The
degradation of the predicted angular orientation will be discussed in the next section

with the time-dependent simulations results.

The miss distance, or the distance between the closest points on the JDAM and

any other component of the aircraft, is presented in Fig. 10. While the predicted

displacement and angular position are in good agreement with the flight data over

the time interw_l presented, the miss distance underpredicts the separation between

10
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Figure 8: Angular positions for sequential-static simulations. Ftight data from Cenko[7].

the store and the wing pylon. The explanation for this is that as the ejectors push

away the store, there is a reaction force applied to the pylon. This reaction leads

to a rolling moment on the aircraft which rolls the pylon away from the JDAM, i.e.
increases the miss distance between the two. This reaction of the aircraft is not

modeled in the current work (or in previous work in the literature), and hence the

separation is underpredicted. The closest miss, which occurs near t = 0.10 sec., is

caused by the tail fins sweeping under the pylon as the JDAM yaws nose outboard.

At t = 0.20 sec. the closest component changes from the pylon to the EFT, a.s the

body continues to yaw and fall.

Figure 11 shows a series of snapshots of the surface pressure as the JDAM falls
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Figure 10: Miss distances for sequential-static simulations. Flight data from Cenko[7],

through t = 0.40 sec. in the i't.i_ = 1.055 simulation. The nose of the store is forced

downward and outboard by the shock fiom the leading-edge of the wing. This causes

the JDAM to pitch and yaw immediately upon release from the holding pylon. The

change in shock structure on the pylon as the JDAM releases can be seen, as well

as changes on the aft portion of the aircraft fuselage. As the JDAM falls, the tail

fins provide restoring moments which cause the store pitch back nose up and inboard

(compare with Figs. 8 and 9). A complementary series of snapshots which show the

adaptation of the mesh to the moving geometry are shown in Fig. 12. The mesh

automatically adapts to the new geometry position, and also coarsens in regions the

body has moved through.
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(a) t = 0.0 sec. (b) t = 0.1 sec.

(c) t = 0.2 sec. (d) t = 0.3 sec.

Figure 11: Surface pressure contours during JDAM separation.

3.2 Time-dependent Simulations

The previous section presented results of coupled 6-DOF/CFD trajectory pre-

dictions using sequential-static flow simulations. This is contrasted here with fully-

coupled, time-dependent trajectory simulations performed using the Cartesian moving-

body solver described in [19]. Analyzing Fig. 9, the angular rate prediction for the

sequential-static simulations begins to degrade after the rotation of the body experi-

ences both the highest velocities and an inflection point in the acceleration, i.e. near

t = 0.125 for pitch rate, and t = 0.20 for yaw rate. This combination of high velocity

and change in sign of acceleration indicate regions in the store trajectory where dy-

namic, or unsteady effects, may be significant. This is examined in Figs. 13-16, which

present relative displacement, angular orientation, angular rate, and miss distance for

the time-dependent simulations, compared with the sequential-static simulations and

flight-test data. The data shows that the two CFD trajectory simulations are in good

agreement prior to t = 0.125, when the pitch rate reaches a maximum. After this

point, the predicted pitch behavior is improved, however the yaw prediction degrades.

The pitch and yaw trajectories are similar in the sequential-static and time-dependent
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(a)t=O.O sec. (b) t = 0.1 sec.

(c) t=0.2 sec. (d) t = 0.3 sec.

Figure 12: Cutting planes through the volume mesh during JDAM separation.

sinmlations, except for tile response near the maximum rates, i.e. the dynamic ef-

fects are largely localized to this region of the trajectory. The relative displacement

prediction is nearly unchanged in the time-dependent simulations at M_ = 1.055,

however M_ = 0.962 shows a relatively significant change in vertical drop, which is

not currently well understood. The underprediction of the separation distance after

t = 0.20 is caused by the over-predicted yaw angle in both the sequential-static and

time-dependent simulations, which causes the tail fins to remain close to the EFT.

Consistently, in both the sequential-static and time-dependent simulations, the

predicted roll behavior of the JDAM does not correlate well with the flight data.

This is not unique to the current work, and has been noted in previous trajectory

predictions for this configuration[7-15]. Cenko[7] notes "[roll attitude] is the hardest

to predict, fortunately has a minimal impact on the trajectory". While it's true

that small changes in roll orientation are likely insignificant, the current predictions

consistently vary from the flight data by roughly 5 ° of roll, and even while the store is

still being pushed by the ejectors the roll is predicted in the opposite direction. Since

the roll orientation can effect the restoring moment provided by the tail fins, it's

unclear whether these small differences can accumulate to produce tile larger errors

14
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Figure 13: Relative displacement for time-dependent simulations. Flight data from Cenko[7].
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Figure 14: Angular positions for time-dependent simulations. Flight data from Cenko[7].

seen in pitch and yaw prediction in the current work.

3.3 Computational Cost

The computational cost for the current Cartesian/6-DOF scheme is presented in

two forms; absolute and relative to computing a fixed "database" of static results.

Note that the current work was performed with tools designed for computing a single

fixed static simulation, and little effort has gone into tailoring them for sequential

moving-body calculations. All sinmlated results presented here were computed using

NASA Ames' 1024 CPU, single-image SGI Origin 3000 (O3K) which has 600MHz
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MIPS4 processors. The current flow solver has been demonstrated to scale linearly

to 512 CPUs on this architecture for problems of the size considered here. The

current simulations all required roughly 260 single-CPU-hours of computational time

to complete, with less than 5% of the computational time utilized by the volume mesh

generation process. The sequential-static and time-dependent simulations require the

same computational time with the current scheme. The wallelock time to complete a

simulation using 32 CPUs is approximately 15 hours. This time reflects the adverse

effects of the serial mesh generation on the parallel efficiency of the entire process.

Parallelizing the entire process, including volume mesh generation, will be a major
focus of future work.
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The current work couples together the CFD flow solver and the 6-DOF trajectory

prediction. Another method of integrating high-fidelity CFD with 6-DOF predictions

is to build a computational database of results, and then "fly" 6-DOF trajectories

through this computed database. The advantage of this approach is that once the

initial database is created, many 6-DOF trajectories can be computed essentially at

no cost. The disadvantage of the database approach for 6-DOF simulations is the

large number of computational cases required to build even a minimal database. For

a single fixed wind vector (M_, c_, ,_) there are 6 free parameters (3 displacement

and 3 angular position) for a static CFD database.* If each of these is allowed to

vary over 10 distinct states (which is relatively coarse), then 106 computed cases are

required to fill tile database. This is impractical even for wind tunnel programs. It's

possible to reduce the required independent variables by assuming that the horizon-

tal and lateral relative displacements are much less than the vertical, and that the

roll orientation of the body can be ignored. This reduction leaves on the order of

1000 data points required for steady-state simulation. In the current work, an ini-

tial steady-state calculation is required at the initial position of the store, and each

timestep costs roughly 1/5 of a flfll static simulation. As 60 steps were required for

a full simulation using the current timestep, the cost for the current coupled 6-DOF

trajectory simulations is roughly 10 steady, static simulations. This implies that on

the order of 100 such coupled simulations can be performed for the cost of building

a coarse, approximate database. Further, each coupled simulation is independent, so

that the sinmlations can be carried out in parallel. The higher accuracy and relatively

low cost makes these coupled CFD/6-DOF simulations an attractive analysis tool.

4 Summary

The utility of a coupled Cartesian/6-DOF trajectory prediction scheme has been

demonstrated by simulation of a GBU-32 JDAM separating from an F/A-18C. The

Cartesian scheme provides an automated, robust meshing scheme which can easily

be integrated into a design analysis. The accuracy and computational cost of the

current simulated results are commensurate with previous results for the F-18/JDAM

separation computed using body-fitted approaches.

Future work will progress on two major fronts; understanding the discrepancies

in predicted angular orientation that occur at later time levels, and optimizing the

flow simulation process for these moving-body simulations. There are many possi-

ble explanations, both computational and experimental, for the degradation in the

predicted trajectory at later time levels. It's important to understand whether this

behavior is related to the current approach so that it can be corrected, if necessary.

The process optimization itself will mainly focus on parallelizing the volume mesh

generation, and incorporating an solution-adaptive capability.

"Static here refers to the absence of any dynamic stability derivative information.
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Appendix

A 6-DOF Model

This appendix describes an implementation of the unconstrained motion of a

rigid body, commonly referred to as six-degree-of-freedom (6-DOF) motion. The 6-

DOF model is implemented as a stand-alone package with a well-defined Application

Programming Interface (API). In this manner it can easily be integrated within a CFD

flow solver, or similar application, or used as a stand-alone package, for example when

performing trajectory simulations within a pre-existing database of force and moment
data.

Tile 6-DOF motion is computed by solving the Newton-Euler equations for rigid-

body motion. The motion is broken into a translation of the center of mass (c.m.)

of the body (Newton's equations), and a rotation about a centroidal axis system

attached to the body (Euler's equations) (cf. Fig.A.1). Here superscripts are used to

designate the coordinate system, with i referring to the inertial frame, and b the body

frame. The inertial frame is considered to be the natural coordinate system of the

geometry. Note that this inertial frame is not in general identical to the aerodynamic

frame in which forces and moments are calculated, so a transformation from the

aerodynamic frame to the inertial frame is required.

b

i
X

Figure A.I: Inertial and body-fixed coordinate systems. Superscripts are used to designate the

coordinate systenl, with i referring to the inertial frame, and b the body frame. The body frame

is rotated by an angle a5 about the axis a relative to the inertial frame. The body frame is the

unique frame defined by the principal axes of the moments of inertia. This is contrasted with the

non-unique body frame b' which is defined by convenience. The angular velocity is w is the principal

axes frame, and (p, q, r) in the general body frame.

Tile mass center translation is governed by Newton's laws of motion, which are
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writtenin tileinertialframe as

F _ = F _ + F: + Fg = mr_ ,,,

where the applied force acting through the center of mass has been broken into three

components; the aerodynamic forces F_, the external applied forces (such &s thrust)

F_, and the forces due to gravity F_. Equation A.1 is written in non-dimensionM

variables using the reference density (p_), reference velocity (freestream sonic speed

a_), and a reference length (L). The non-dimensional mass is thus the dimensional

mass scaled by, the mass contained in a reference unit volume

rh
77_,-

p_L a

and similary the forces and gravity are non-dimensionalized by

P
F-

p_a_L 2

gL
g = -j_

Newton's laws can be integrated directly to give the position of the mass center as

a function of time. Holding F constant over the discrete physical timestep (t_,t _+1)

gives

,: (t,,+l) 1= - AF + U_m(t )At + r_._ (t) (A.2)
rc'm" 2

where ui_.,_, is the velocity of the center of mass.

The rotational motion is governed by Euler's equations of motion. The body axes

are specified to coincide with the principal axes of inertia, with origin at the center

of mass (cf. Fig. A.1). Euler's equations are then

__fl b = b .bI_ (I_- _ _- I_)._

B,_b = b . b7_.]2 (Z b b b b- - I1)a:a% (A.3)

where M b are the applied moments in the body' frame, and are broken into aero-

dynamic and external components as in Eqn.A.1. oa_ is the angular velocity in the

body frame, and I _ are the principal moments of inertia. Using the same reference

quantities as above, the non-dimensional applied moments and moments of inertia

are given by

1VI b
M b -

p a2 L a

i b -
p_L s
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EquationA.3 is integratednumericallyusinga 4th-orderRunge-Kuttascheme.
In order to transformthe angularvelocity into a changein orientation,it's desir-

ableto usequaternions,commonlyreferredto as "Euler parameters",to specifythe
angularorientationof thebody framewith respectto the inertial frame(cf.Fig. A.1).
A quadratictransformationmatrix A, which iscomposedof thedirectioncosines,can
beexpressedasthe result of two successivelinear transformations

A = GL r

whereG and L7'areboth composedof the 4 Eulerparameters

p=[e0 el e2 e3] T

The transformation matrix in terms of tile Euler parameters is given by

- ' 1 ]

e_-I-e_-- _ ele2--e0e3 ele3+e0e2
1

A=2 ele2+e0e3 eg+e_- 5 e2ez-eoel[ (A.4)
2 1

Lele3 - e0e2 e2ea+e0el e_+ez - 5J

Tile Euler parameters specie: an axis of rotation (a), and an angular displacement

about that axis (¢)

¢
e 0 = COS-

2

el = a_ sin -¢
2

e2 = % sin ¢
2

¢
e3 = a_ sin -_

(A.5)

According to Euler's theory of motion, the Euter parameters are the same in both

the body and fixed reference frames, so no superscript appears on p, however note

that in this case the discussion assumes the reference frame is attached to the center

of mass.

Using this, the change in orientation due to rotation can be found through

P = 1L:rwb (A.6)
2

which can also be integrated numerically using a 4th-order Runge-Kutta scheme. Since

the Euler parameters are unit-normalized quaternions, it's necessary to impose that

[Pl -- 1 after solving Eqn. A.6. L T is given by

g T =

-e I -e 2 J

-e 3

eo -e 3 e 2

e3 eo -e 1

-e 2 e I eo
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In order to update the position of an unconstrainedrigid body, the following
procedureis thus followed

1. Translate
SolveNewton'slaw'sof motion using Eqn. A.2 for the translation of the center

of mass.

2. Rotate

(a) Angular Velocity

Numerically solve Euler's equations of motion using Eqn. A.3 for the an-

gular velocity in the body frame.

(b) Euler Parameters

Update the orientation of the body by numerically integrating Eqn. A.6

for the Euler parameters.

3. Reposition

Position the body according V = rc.m. + Ar b

While quaternions are convenient for calculating the angular position of a rigid

body, they are not always intuitive. It's often desirable to transform the quaternions

to a set of three angles which are non-unique, but in practice often unambiguous.

The Euler parameters can be converted to angular displacement (¢:_, Cy, Cz) of the

body relative to the inertial frame using

2.0 (e0el + e2e3)
tan(4 ) = -s--5- r2--r2

e 5 - e I - e 2 + e3

sin(O_) = -2.0 (ele 3 -- eoe2) (a.7)

2.0 (ele2 _- eoe3)

tan(+:) = eg+ - - e]

The potential singularity in x and z orientation is obvious.

A.1 6-DOF Model Verification

The 6-DOF implementation was verified using a variety of analytic test cases.

Integration of Newton's laws (Eqn. A.1) is verified using response of a point mass to

a constant external force, and the terminal velocity of a falling sphere exanfines this

integration for a non-constant external force. Integration of Euler's Eqn. A.3 was

examined using the response of a cylinder undergoing a coupled spin. A tumbling

rectangular volume demonstrates that the numerical implementation has the same

stability properties as the physical system.

Translation is integrated analytically according to Eqn. A.1, holding the applied

force constant over the timestep. Since the integration is analytic, it is exact in the
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presenceof a constantexternal force. To verify this considera point masswith an
initial upwardvelocityin agravitational field. The forcedueto gravity is normalized
suchthat mg= (0, 0, -1), and the initial velocity vector is u = (0, 0, 1). Figure A.2

shows the exact solution for this case compared with the computed solutions taken

with At = 0.025 and At = 0.1. Since the integration is exact for this constant external

force, the numerical integration reproduces the exact solution at both timesteps.

0.25

0.2

g0.15

0.1

0.05

! • 6DoFf,0, \
' 02. _ ' ' '0.4 0.6 0.8

Time

Figure A.2: Distance as a function of time for a unit point mass in a gravitational field. The force

due to gravity is normalized such that mg = (0, 0, -1), and the initial velocity vector is u = (0, 0, 1).

When the external force is non-constant, holding F fixed over the timestep results

in formal first-order accuracy. To demonstrate this, consider a sphere with drag

coefficient CD = 0.5 falling through air in a gravitational field. The external force is
F mg_CD 1 _ 2= _pu_S. When the gravity and drag forces balance each other the sphere

Taking 1, S 1, and rng (0,0, 1)reaches its terminal velocity u_ = V cops P ....

to construct a unit model problem, one can solve for the velocity as a function of

position for an object initially at rest and falling in the -z direction as

u_(z) = V/4(1-e °.5_)

Figure A.3 plots velocity as a function of distance for the theoretical result and

numerical experiments run with At = 0.1, 0.2 and 0.4. As expected halving the

timestep halves the maximum error in the simulations providing the expected order

of accuracy. All simulations converge to the correct terminal velocity (u_ = -2.0)
since the external force becomes a constant at this limit.

Smart [1] presents an exact solution to Euler's equations of motion that corre-

sponds to a tumbling and spinning cylinder. For this example there is no translation,

and in the current notation the inertial properties are given by

I1 =/2

11 - I3 - 12 - I3 = all
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Figure A.3: Velocity vs distance evolution of a sphere falling in a gravitational field subject to air
resistance.

The analytic solution of the time evolution of the angular velocities is

= a cos(At)

w2 = b sin(At)

Cd3_---C

Setting I1 = 1'2 = 1.0, c_ = 0.5, a = 1.0 and c = 0.5 gives/'a = 0.5 and A = 0.25.

At t = 0, the 6-DOF model is initialized with w = (1.0, 0.0,0.5). Figure A.4

shows the system's response to this initial condition compared against the analytic

solution with b = -1. Evolution of the numerically-integrated angular velocities are

plotted for At = 1.0, 2.0 and 4.0. Since the integration is formally fourth order,

the results converge very quickly and only the symbols for At = 4.0 clearly differ

from the theoretical curve. With a At of 1.0 there are approximately 12 samples per

wavelength. Table A.1 provides a quantitative comparison of the convergence, listing

the error in aq at t = 100 as At increases. Since the error increases with time, this is

tile maximum error or the interval t = [0,100]. The data in Table A.1 shows fourth

order asymptotic convergence, as expected.
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Figure A.4: Time evolution of numerical integration for angular velocities compared with an exact
solution of Euler's laws of motion from Smart [1].

0.25

0.50

1.0

2.0

4.0

%Error in _1

at t = 100 Improvement Order of accuracy

5.89E-5 20.96 4.39

1.2047E-3 22.80 4.51

0.02747 25.08 4.65

0.6890 24.09 4.59

16.60

Table A.I: Accuracy of numerical integration of Euler's Eqs. of motion for coupled rotation of a
cylinder.

While the system of Euler's Eqns. decouples when the rotation axes are aligned

with any one of the principal axes of a body, stability analysis shows that this rotation

is only stable around the minor or major axis - rotation around the semi-major axis

is unstable. The coupling of the system means that any small perturbation about

the semi-major axis will excite rotation about the others (cf. Thompson[2]). With

I1 = 1, I., = 10, and Ia = 100, the 6-DOF model was initialized with w = (0, 0, 1),
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prescribing rotation around tile major axis. The system was perturbed by imposing a

moment with magnitude 0.01 about the minor axis over the first time step (At = 0.1).

Figure A.5 shows the system response in terms of the angular rates around the minor

and semi-major axis. As expected, the initial perturbation excites oscillations around

both of these axes, but these oscillations disappear rapidly as the system stabilizes.

Since the system is lossless (i.e. contains no physical dissipation), the rotational energy

of the system must be conserved. Figure A.6 shows the Euler angles of the object,

revealing that the initial oscillations are transformed into a steady, but extremely

small, oscillation about both the minor and semi-major axes. Figure A.7 shows that

this oscillation persists undamped, as expected from a lossless system.

0.0004

-0"00040 5 10 15 20

Time

Figure A.5: Time evolution of angular velocity around minor (red) and senti-major (bhte) axes for

a system spinning around major axis. System is perturbed at t = 0 with an impulsive couple around

the minor axis.

Contrast the results of Figs. A.5-A.7 with those shown in Fig. A.8. In the example

shown in Fig. A.8, the initial angular velocity is prescribed as oa = (0, 1, 0) and the

moments of inertia are unchanged from the previous example. Spin is therefore around

the semi-major axis. When the same initial perturbation is applied, the perturbation

is amplified, resulting in spin around all three axes. It's clear from the plot that the

magnitude of the resulting angular rates is proportional to the moments of inertia
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Figure A.6: Time evolution of Euler angles showing small oscillation excited by perturbation of

system spinning around major axis. System is perturbed at t = 0 with an impulsive couple around
the minor axis.

around these axes. Again, since the systenl is lossless, this tumbling behavior persists

undamped.
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Figure A.7: Late time response of system in Fig. A.6, showing undamped response. System is

perturbed at t = 0 with an impulsive couple around the minor axis.
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Figure A.8: Angular rate response to an initial perturbation for an object initially spinning around

its smni-major axis at rate c_'2 1. Coupling quickly leads to a tumbling motion.
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